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AI-Generated Content (AIGC)
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AIGC, which uses generative models to generate content that satisfies human instructions, 

aims to make the content creation process more efficient and accessible[1].

Language Generation Visual Generation

[1] Cao, Yihan, et al. "A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt." arXiv 2023.

[2] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv 2023.

[3] Brooks, Peebles, et al., “Video generation models as world simulators.” 2024.

Large Language Models: LLaMA-2-7B[2] Video Diffusion Models: Sora[3]
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The model size of generative models has being rapidly increased

Trend of Generative Models

2024/10/18 Xuefei Ning @ NICS-efc Lab

[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv 2022.

[2] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv 2023.

[3] Rombatch et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022.
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Example: 

LLaMA-2-70B [2] (year 2023): 70B params, >120ms/token 

inference speed on 6xRTX 3090Ti.

Stable Diffusion [3] (year 2022): 1.45B params, 𝟔. 𝟐 × 𝟏𝟎𝟑

GPU days to train, 3.5s/img inference speed on NVIDIA A100.

[4] Yang et al., "Harnessing the Power of LLMs in Practice: A Survey 

on ChatGPT and Beyond“, ACM Transactions on Knowledge 

Discovery from Data 2023.
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The model size of generative models has being rapidly increased

Trend of Generative Models
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[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv 2022.

[2] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv 2023.

[3] Rombatch et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022.
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[4] black-forest-labs/flux: Official inference repo for FLUX.1 models

Example: 

LLaMA-2-70B [2] (year 2023): 70B params, >120ms/token 

inference speed on 6xRTX 3090Ti.

Stable Diffusion [3] (year 2022): 1.45B params, 𝟔. 𝟐 × 𝟏𝟎𝟑

GPU days to train, 3.5s/img inference speed on NVIDIA A100.
Stable Diffusion 1.5[3]

~1B Params

Flux[4]

~12B Params



The generation data size has being rapidly increased
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Trend of Generative Models

[1] Achiam, Josh, e t al. "Gpt-4 technica l report." arXiv 2023.

[2] Reid, Machel, et a l. "Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context." arXiv 2024.

[3] Dubey, Abhimanyu, et al. “The llama 3 herd of models.” arXiv 2024.

[4] hpcaitech, "Open-SoRA: Democratizing Efficient Video Production for All.”  https://github.com/hpcaitech/Open-Sora

[5] Chen, Junsong et al. “PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation.”  arXiv 2024.

Release Time
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Longer Sequence Length for Language
Higher Resolution / Longer Video

Length for Vision

OpenSORA[4]

generate Videos

Pixart-sigma[5]

generates 4K image



Challenge and Research Goal
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• As the model size is scaling up, the demands for computing power are 

increasing

• Due to real-time, usable, privacy and other application demands, 

physical limitations of the scenario, as well as cost control 

considerations, models need to be deployed on computing devices 

with limited computing power and low storage, and are required to run 

under low budgets.

• How to deploy “large” generative models and satisfy the application’s 

efficiency requirements while maintaining algorithmic performance?

Our goal is to improve the efficiency (e.g., latency, 

throughput, storage) of generative models to 

satisfy the application requirement.



Research Overview
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Algorithm-level Model-level

Structure 

Design

Model 

Compression

Diffusion Timestep 

Compression

Non-Autoregressive 

Generation

Research Goal：Efficient model inference for AIGC application

Language Generation

Large Language Models

(e.g., LLaMA-2-7B)

Visual Generation

Diffusion Models 

(e.g., Stable Diffusion 3)

Application

Methodology: Hardware-aware algorithm-level and model-level optimization

Technique

Tackling Full Autoregressive 

Generation of LLMs

Tackling Many 

Timesteps of Diffusion



Research Framework
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Efficient Large Language Models

SoT
[ICLR’24]

Parallel generation via prompting.

1.91~2.39x speed-up

Algorithm-level

MoA
[ICLR Submission]

Sparse Attention

LLM-MQ
[NeurIPS’23 Workshop]

Quantization

Decide the heterogeneous elastic rule 

of the attention span for each head.

5.5~6.7x throughput improvement

Mixed-precision quantization. 

2.8-bit quantization

Model-level 

QLLM-Eval
[ICML’24]

Evaluating the effect of quantization. 

Providing knowledge and practical 

suggestions

Survey
[CSUR Submission]

Survey on efficient LLM inference 

techniques

Overview

Efficient Diffusion Models

Quantization

10x 

evaluation 

acceleration

MixDQ
[ECCV’24]

Mixed-precision quantization.  

3x memory decrease,

1.5x speed-up

Model-level

EEP
[ICLR Submission]

Search the pruning pattern for MoE 

and use expert merging for finetuning. 

48%~71% memory reduction, 

1.11~1.40x speed-up,

better performance

ViDiT-Q
[ICLR Submission]

DiTFastAttn
[NeurIPS’24]

Quantization for DiT.  

2.5x memory improvement,

1.5x speed-up

Window & reused attention for DiT.

1.6x speed-up

Pruning

Pruning & Sparse Attention

Fast 

Compression

LCSC
[ICLR Submission]

Linear combination of checkpoints.

15~23x training acceleration,

1.25~2x timestep compression

FlashEval
[CVPR’24]

OMS-DPM
[ICML’23]

USF
[ICLR’24]

Search for optimal 

diffusion schedulers.

1.5~2x speed-up

Algorithm-level
Time Step Compression

DD
[ICLR Submission]

generates image in 0.01s 

and can achieve >100x 

speedup for Image AR model 



Acceleration Demo: LLMs
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Achieving 2× throughput improvement with operator optimization

LLaMA-2-7B on AMD MI210

Before Acceleration (right): 
39 tokens/s

After Acceleration (right): 
79 tokens/s

No performance drop



Acceleration Demo: LLMs
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• Sparse attention batch inference demo

Vicuna-7B on Nvidia-A100

batch size 20

end-to-end latency

Before Sparse Attention (left): 

Latency 42s

After Sparse Attention (right): 
Latency 18s



Acceleration Demo: Diffusion Models

2024/10/18 Xuefei Ning @ NICS-efc Lab Page 13

Timestep Optimization + TensorRT Deployment:

Achieving 6.9× end-to-end speed-up and reducing 1.5× memory

Stable Diffusion on a single

NVIDIA A100 GPU 

Before Acceleration (left): 

11.7s latency, 11.9G VRAM

After Acceleration (right): 
1.7s latency, 7.8G VRAM

Almost no performance drop



Acceleration Demo: Diffusion Models
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Efficient Attention for DiT:

Achieve up to 1.8x latency speedup

Pixart-Sigma

2Kx2K image, 50 steps

on NVIDIA A100 GPU 

Before Acceleration (left): 
~16s latency

After Acceleration (right): 
~8s latency

Almost no performance drop



Acceleration Demo: Diffusion Models
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Low-bit Quantization for DiT-based Image and Video Generation:

Achieve up to 2x memory saving, 1.7x latency speedup

OpenSORA

512x512x16 Frames,

on NVIDIA A100 GPU 

Before Acceleration (left): 
~8.9s latency (20 step)

After Acceleration (right): 
~5.1s latency (20 step)

Almost no performance drop

FP16 ViDiT-Q W8A8
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How LLMs Do Inference
• Most LLMs are based on the Transformer architecture[1]. 

• A Transformer block consists of :

• Attention-Linear (generate matrix Q, K, V)

• Multi-Head Attention

• Feed Forward Network 

• Layer Norm

• A typical LLM inference process: 

2024/10/18 Xuefei Ning @ NICS-efc Lab Page 17

[1] Vaswani, Ashish, et al. "Attention is all you need." NeurIPS 2023.

Attention

Feed

Forward

Network

softmax
𝑸𝑲𝑻

𝒅𝒌

𝑽

 where 𝑄, 𝐾, 𝑉 ∈ 𝑅𝑁×𝑑 

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Example of Decoder's word-by-word translation



How LLMs Do Inference
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LLM Inference has two stages:

Output: [‘Processing’] (1*dim)

WQ WV

WO

Multi-head Self-Attention

WK

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Prompt: ['I', 'like', ‘natural', ‘language’] (4*dim)

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Prompt: [‘I’, ‘like’, ‘natural’, ‘language’, ‘Processing] (1*dim)

Output: [‘!’] (1*dim)

• Decode Stage: utilizes and updates the KV cache 
to generate tokens one by one, where the current 
token depends on all the previously tokens 

• Prefill Stage: takes a prompt sequence to 
generate the key-value cache (KV Cache)

The prefill stage is 
primarily compute-
bound. (GEMM)

The decoding stage 
is primarily memory-
bound. (GEMV)

The memory 
overhead of 
KV Cache 
linearly grows



Efficiency Analysis of LLM Inference
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• Bottleneck Analysis of Large Parameter Size

• Take LLaMA3-70B as an example: 8192*8192 linear layer

• A100 FP16 CUDA Core: 𝐼0 =156 FLOPs/Byte
In

p
u

t 
To

ke
n

 le
n

gt
h

Batch Size1

159

340

𝐼 < 𝐼0

Memory-
bound

𝐼 > 𝐼0

Compute-
bound

𝐼

FL
O

Ps
/B

yt
e

Batch Size1

159

𝐼0

𝐼 < 𝐼0

Memory-
bound

𝐼 > 𝐼0

Compute-
bound

In most cases, the prefill 

stage is compute-bound. 

The FP16 computational 

units are slow.

When the batch size is large, 

the decode stage becomes 

compute-bound. The FP16 

computational units are slow.

When the batch size is small 

the decode stage becomes 

memory-bound. The FP16 

weight access speed is slow.

𝐼

Decode StagePrefill Stage
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• Bottleneck Analysis of Large Sequence Length

[1] Ubben, Giselle. “How long is short-term memory? Shorter than you might think.” Academic Resource Center, Duke University

[2] Brysbaert, Marc. “How many words do we read per minute? A review and meta-analysis of reading rate.” Journal of Memory and Language

* with Llama2-7B LLM，Measured on the minimum A100-80GB graphics card that can accommodate the model; Prefill with 1 A100-80GB; Decode with 8 A100-80GB; The A100 peak 

performance is calculated using the FP16 TensorCore.

Seq. Length N 2K 1M

Compute O(N2)
28.7 

TFLOP

5.9×105

TFLOP

Memory O(N) 15 GB 526 GB

First-token 

latency
O(N2) 150 ms 30 min

Generation 

speed
O(N)

88.50

token/s

0.5 

token/s

Llama2-7B LLM inference cost
System capability 

and user requirements

A100 peak computing power*

312 TFLOPS

A100 maximum GPU memory

80GB

Waiting causes customer losses;

Short-term memory: 15-30s[1]

Human’s average reading speed:

5.4 token/s[2]

Efficiency Analysis of LLM Inference
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• Root causes of inefficiency during LLM Inference

• Model scale: A large number of weights and computations.

• Attention operation: It has quadratic complexity w.r.t. input token length.

• Decoding approach: Generate tokens one by one (fully sequential).

Higher Computational 

Cost

Higher Memory Access 

Cost

Higher Memory Cost

Higher Latency

Lower Throughput

Higher Power

Consumption

Higher Storage

Quadratic-complexity 

Attention Operation

Large Model Scale

Auto-regressive 

Decoding approach

[1] Zhou, Zixuan, Ning, Xuefei, et al. "A Survey on Efficient Inference for Large Language Models." arXiv 2024.

LLaMA-3.1 405B

32k x 32k

Prefill: ~12760 TFLOPs
Decode: 0.35 TFLOPs

High E2E latency

Model: 396ms     (A100)
KV Cache: 16ms  (A100)

Model: 810GB
KV Cache: 32GB ~842GB (11*A100)

400W/GPU (A100)

Decode 200 tokens: ~1.6 tokens/s

Prefill: ~42.67s
Decode: ~0.426s

E2E(decode 200 tokens): 127.87s

For example: Deploy LLaMA-3.1 405B in the cloud server

Efficiency Analysis of LLM Inference



Efficient Techniques for LLMs
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Directions to improve Large Language Models’ efficiency

Overall Cost
(for each request)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆 ∗ 𝑵𝒕𝒐𝒌𝒆𝒏

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆 + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕

Prefill Stage
Reduce 𝑡𝑝𝑟𝑒𝑓𝑖𝑙𝑙 ,

𝑀𝑤𝑒𝑖𝑔ℎ𝑡 , 𝑀𝑜𝑡ℎ𝑒𝑟_𝑎𝑐𝑡

Decode Stage

Reduce 𝑡𝑑𝑒𝑐𝑜𝑑𝑒 ,
𝑀𝑤𝑒𝑖𝑔ℎ𝑡 , 𝑀𝑘𝑣 𝑐𝑎𝑐ℎ𝑒

······
Prefill Decode Decode Decode



Overview of Efficient Techniques
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Structure 

Design

Model 

Compression

Inference 

Engine

Serving 

Framework

Output 

Organization

Input 

CompressionData-level 

Optimization

Model-level 

Optimization

System-level 

Optimization

[1] Zhou, Zixuan, Ning, Xuefei, et al. "A Survey on Efficient Inference for Large Language Models.” arXiv 2024.
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Input 

Compression

Output 

Organization

Structure 

Design

Model 

Compression

Inference 

Engine

• Graph and Operator 

Optimization
• Speculative decoding

Serving 

Framework

• Memory Management

• Batching
• …

• Prompt pruning

• Soft prompt tuning
• …

• Output Organization

• Dynamic MoE

• Low-complexity attention

• Quantization

• Sparse Attention
• Weight Pruning

• …

Overview of Efficient Techniques

[1] Zhou, Zixuan, Ning, Xuefei, et al. "A Survey on Efficient Inference for Large Language Models.” arXiv 2024.
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Input 

Compression

Output 

Organization

Structure 

Design

Model 

Compression

Inference 

Engine

• Graph and Operator 

Optimization
• Speculative decoding

Serving 

Framework

• Memory Management

• Batching
• …

• Prompt pruning

• Soft prompt tuning
• …

• Dynamic MoE

• Low-complexity attention

• Quantization

• Sparse Attention
• Weight Pruning

• …

Overview of Efficient Techniques

• Output Organization

[1] Zhou, Zixuan, Ning, Xuefei, et al. "A Survey on Efficient Inference for Large Language Models.” arXiv 2024.



Skeleton-of-Thought (SoT)
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We further extend SoT with router (SoT-R) to make the 

overall solution more practical.

• The router first decides whether to apply the SoT decoding 

mode based on the user’s prompt.

[1] Ning, Xuefei, et al. "Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding." ICLR 2024.

• Skeleton-of-Thought (SoT) consists of two stages: 

(1) Skeleton Stage: Guide the LLM to output a concise skeleton of the answer.

(2) Point-expanding Stage: Guide the LLM to expand on each point from the skeleton 

in parallel.

• SoT can improve the hardware utilization and decrease the end-to-end latency.

Page 27



Skeleton-of-Thought (SoT)
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Accelerating LLM inference by up to 2.39× end-to-end speed-up 

without any changes to their model, system, or hardware

Vicuna-7B model on one A100 GPU: 2.1× end-to-end speed-up compared with sequential decoding

[1] Ning, Xuefei, et al. "Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding." ICLR 2024.
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Input 

Compression

Output 

Organization

Structure 

Design

Model 

Compression

Inference 

Engine

• Graph and Operator 

Optimization
• Speculative decoding

Serving 

Framework

• Memory Management

• Batching
• …

• Prompt pruning

• Soft prompt tuning
• …

• Output Organization

• Dynamic MoE

• Low-complexity attention

Overview of Efficient Techniques

• Quantization

• Sparse Attention
• Weight Pruning

• …

[1] Zhou, Zixuan, Ning, Xuefei, et al. "A Survey on Efficient Inference for Large Language Models arXiv 2024.



Quantization Technique
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• Quantization is a promising technique to address the aforementioned efficiency 
issues.

• Taking signed uniform quantization as an example, quantization parameters 
include

                Scaling Factor,      Zero Point,        Bitwidth

• The Weight-Activation Quantization methods enable the utilization of low-
precision Tensor Cores to mitigate the compute-bounded GEMM operators in 
the prefill stage. 

• The Weight-only Quantization methods prove effective to accelerate the 
memory-bounded GEMV operators in the decoding stage.

• The KV Cache Quantization methods are necessary to alleviate the large memory 
overhead when handling tasks with long contexts or large batch sizes.

Quantization

S
1 8 23

Fp32 E M

S M
1 7

Int8



Mixed-precision Quantization (LLM-MQ)
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• For zero-shot understanding tasks:
• When the average accuracy loss is around 0.1%, the 

model can be quantized to an average of 3.6 bits.

• When the average accuracy loss is around 1%, the 

model can be quantized to an average of 2.8 bits.

[1] Li, Shiyao, Ning, Xuefei et. al., "LLM-MQ: Mixed-precision Quantization for Efficient LLM Deployment." NeurIPS Workshop 2023

Expected to accelerate linear operators by 1.9~2.7× speed-up via mixed-

precision quantization and sparse outliers protection technique

Xuefei Ning @ NICS-efc Lab

• Assign high bit-width to high-sensitivity layers in 

order to minimize the change in model output.
• Use first-order information to estimate the sensitivity:

• For each layer, we minimize the change of loss:

• We model the above bit-width allocation task as the 

following integer programming problem:

Does the accuracy on specific tasks sufficiently 

reflect the effect of quantization on LLMs?



Evaluating Quantized LLMs (QLLM Eval)
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[1] Li, Shiyao, Ning, Xuefei, et al. “Evaluating Quantized Large Language Models.”  ICML 2024.

• Knowledge summary
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Input 

Compression

Output 

Organization

Structure 

Design

Model 

Compression

Inference 

Engine

• Graph and Operator 

Optimization
• Speculative decoding

Serving 

Framework

• Memory Management

• Batching
• …

• Prompt pruning

• Soft prompt tuning
• …

• Output Organization

• Dynamic MoE

• Low-complexity attention

Overview of Efficient Techniques

• Quantization

• Sparse Attention
• Weight Pruning

• …

[1] Zhou, Zixuan, Ning, Xuefei, et al. “A Survey on Efficient Inference for Large Language Models.” arXiv 2024.



Attention Mechanism
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Attention Mechanism
each word "looks at" other words in the 

sentence to determine their relevance 

(attention value) to the current word.

Attention Matrix
Represents the relevance 

between word pairs with matrix, 

showing the the attention values.

Sparse Attention
Each word doesn't need to focus 

on all words, only a few relevant 

ones, such as nearby context.*

[1] Child, Rewon et al. “Generating Long Sequences with Sparse Transformers.”, arXiv 2019



Sparse Attention Methods
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[1] Kitaev, Nikita , Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer ." arXiv 2020

[2] Zaheer, Manzil, et al. “B ig b ird: Transformers for  longer sequences.” NeurIPS 2020

BigBird
2020.7

For generative large language models, 

like GPT

For language understanding models, 

like BERT

design the unified static mask 

to reduce 

attention computation 

during prefill

Reformer
2020.2

static

dynamic H2O
2023.6

StreamingLLM
2023.9

compute attention 

within the same bucket,

dynamically allocate tokens to 

a unified number of buckets

during prefill

dynamically prune 

previous tokens at a unified ratio 

in the KV-cache

during decode

design the unified static mask 

to reduce 

attention computation and KV-cache 

during prefill and decode

[3] Zhang, Zhenyu, e t al. "H $ _2 $ O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language 

Models." arXiv 2023

[4] Xiao, Guangxuan, e t al. “Efficient Streaming Language Models with Attention Sinks.” ICLR 2024.



The Local Context Problem
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needle-in-a-haystack task

Below is a record of lines I want you to remember. 

For each line index, memorize its corresponding

<REGISTER_CONTENT>. 

line funny-boy: REGISTER_CONTENT is <34836>

line cute-chicken: REGISTER_CONTENT is <28499>

…

line lovely-dog: REGISTER_CONTENT is <28840>

…

line small-bug: REGISTER_CONTENT is <23550>

Tell me what is the <REGISTER_CONTENT> in line lovely-

dog? I need the number.

The <REGISTER_CONTENT> is <28840> ✓

The <REGISTER_CONTENT> is <23550> ⤫

local attention, local context

lo
n

g
 c

o
n

te
x
t

local attention[1]

+ global attention on 
initial tokens

remember

forget
LLM forgets the context 

beyond the attention span

a
tt

e
n

ti
o

n
 

s
p

a
n

[1] Xiao, Guangxuan, e t al. “Efficient Streaming Language Models with Attention Sinks.” ICLR 2024.



Mixture of Attention Pattern
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For different attention heads For different input lengths

 different heads show different attention spans

find the optimal attention span for each head

short input

long input

?

or

 different input lengths
show different

elastic rules

find the optimal
elastic rule

for each head

[1] Fu, Tianyu, … , Ning, Xuefei, e t al. “MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression.” ICLR 2025 Submission.

• Insight：different attention patterns exist in a single LLM



Mixture of Sparse Attention (MoA)
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Step1: Dataset
Construct calibration dataset using 

long-contextual MultiNews dataset 

along with summarizations 

generated by original LLM.

Step2: Profile
Automatically quantify the influence of 

different attention values in LLM on final 

prediction results, , producing accuracy-

density trade-offs curves for all schemes.

Step3: Optimize
Select the optimal elastic rule for 

each attention head to minimize the 

overall accuracy impact at a given 

sparsity level across input lengths.

With the masks, large models can skip the corresponding attention computations and KV-Cache, 

achieving inference efficiency optimization without needing additional training.



Mixture of Sparse Attention (MoA)
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Accuracy-Throughput Pareto Front

7x
throughput

over dense 

FlashAttention2
on single A100-80GB

for 7B and 13B LLMs
at 50% density

1.4x
batch size

3.0x
static-size KV-Cache

attributed to:

1.5x
reduced attention

EfficiencyLong Context Retrieval

3.9x
effective context length

over avg. attention span

256k
generalizable input length

when profile within 8k

Long Context Understanding

Benchmark scores

across 7-70B 

models
at 50% density

Consistent 
Pareto front

better trade-off than baselines
Vicuna-7B model with 8k input length

1.2x
GPU kernel design

• Performance overview

Open source
project page with code

compression pipeline,
CUDA kernel
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Lower Latency Higher Throughput Lower Power

Consumption
Lower Storage

Model Scale

Attention 

Operation

Decoding 

Approach

What algorithm 

property?
SolutionsCause what?

• Large computation

• Large memory access

• Large memory footprint

• Input-quadratic computation

• Input-quadratic memory access

• Input-quadratic memory footprint

• Low arithmetic intensity (i.e., computation / 

memory access) cause under-utilization

• Varying length -> Dynamically increasing 

KV cache cause fragmented memory, 

increasing both footprint and access

Input 

Compression

Output 

Organization

Structure 

Design

Model 

Compression

Inference 

Engine

• Graph and Operator 

Optimization
• Speculative decoding

Serving 

Framework

• Memory Management

• Batching
• …

• Prompt pruning

• Soft prompt tuning
• …

• Output Organization

• Dynamic MoE

• Low-complexity attention

Overview of Efficient Techniques

• Quantization

• Sparse Attention
• Weight Pruning

• …

[1] Zhou, Zixuan, Ning, Xuefei, e t al. "A Survey on Efficient Inference for Large Language Models arXiv 2024.



Efficient Expert Pruning (EEP)
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Construct search space of expert merging and search for coefficients.

Can be used to prune active/total expert num.

[1] Enshu Liu , … , Xuefei Ning, e t al. “Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs ”  ICLR 2025 Submission.

1. Inactive expert can benefit

2. Redundancy exists

Adjust number of active expert

Key Observations:

Search Space
1. Weight Merging Matrix

2. Routing weights 

transformation

Use Cases

1. Reduce total expert 

2. Reduce active expert

Search Process
1. Discrete (only prune)

2. Continuous (expert merging)



Efficient Expert Pruning (EEP)
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EEP prunes 75%/50% total/active expert while achieves comparable and 

even better performance. EEP can generalize well on OOD data.
Reduce Total Experts

Reduce Active Experts

Generalization Test

Expert merging improves the performance of the 

pruned model

[1] Enshu Liu , … , Xuefei Ning, e t al. “Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs ”  ICLR 2025 Submission.



Efficient Techniques for LLMs
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Overall Cost
(for each request)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆 ∗ 𝑵𝒕𝒐𝒌𝒆𝒏

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆 + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕

SoT
(Skeleton-of-Thought)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆 ∗ 𝑵𝒕𝒐𝒌𝒆𝒏 /𝑩

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆 + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕

LLM-MQ
(Mixed-precision quantization)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆↓ ∗ 𝑵𝒕𝒐𝒌𝒆𝒏

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕↓ + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆 + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕

MoA
(Mixture of Attention)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆↓ ∗ 𝑵𝒕𝒐𝒌𝒆𝒏

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆↓ + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕

EEP
(Efficient Expert Pruning)

Total Latency: 𝒕𝒑𝒓𝒆𝒇𝒊𝒍𝒍 + 𝒕𝒅𝒆𝒄𝒐𝒅𝒆↓ ∗ 𝑵𝒕𝒐𝒌𝒆𝒏

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕↓ + 𝑴𝒌𝒗 𝒄𝒂𝒄𝒉𝒆 + 𝑴𝒐𝒕𝒉𝒆𝒓_𝒂𝒄𝒕
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Background1

Large Language Models (LLMs)2

Diffusion Models3

4 Research Summary



How DMs do inference
• Forward Process: Gradually add gaussian noise of different levels 

• Backward Process: Gradually denoise the gaussian noise

• Intuition: the NN learns to predict the “noise” at each timestep.
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[1] Ho, Jonathan et al. “Denoising Diffusion Probabilistic Models.” ArXiv 2020.
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Diffusion Model

Current SOTA

visual generation scheme

Large Param Size: 2.5B (SDXL)

Iterative NN Inference: 10-100x

Latency Challenge:

Memory Challenge:

Efficiency Analysis of DM Inference

Current visual generation faces efficiency challenge

Diffusion U-Net

Random Noise

Solver

t

Iterate T times

Generated Image
Large Scale Model

Image Editing

Needs Fast (<1s) Feedback

Cannot Satisfy

SDXL 50 steps

on RTX3090: 30 s

SDXL model

9.7GB GPU Memory

Cannot Fit In

Desktop GPU: RTX4070
8GB GPU Memory
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Directions to improve Diffusion Models’ efficiency

Diffusion U-Net

Random Noise

Solver

t

Iterate T times

Generated Image
Large Scale Model

Overall Cost
(for each iter)

Total Latency: 𝒕𝒎𝒐𝒅𝒆𝒍 ∗ 𝑵𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏

Algorithm-level

Reduce 𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

Model-level

Reduce 𝑡𝑚𝑜𝑑𝑒𝑙 ,
𝑀𝑤𝑒𝑖𝑔ℎ𝑡, 𝑀𝑎𝑐𝑡

Efficient Techniques for DMs
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Overview of Efficient Techniques

Latency Challenge:

Memory Challenge:

Image Editing

Needs Fast (<1s) Feedback

Cannot Satisfy

SDXL 50 steps

on RTX3090: 30 s

SDXL model

9.7GB GPU Memory

Cannot Fit In

Desktop GPU: RTX4070
8GB GPU Memory

Efficient Diffusion Models

Quantization

MixDQ
[ECCV’24]

Mixed-precision quantization.  

3x memory decrease,

1.5x speed-up

Model-level

ViDiT-Q
[ICLR Submission]

DiTFastAttn
[NeurIPS’ 24]

Quantization for DiT.  

2.5x memory improvement,

1.5x speed-up

Window & reused attention for DiT.

1.6x speed-up

Pruning & Sparse Attention

We improve diffusion model’s efficiency

from Algorithm & Model & Data level

Fast 

Compression

LCSC
[ICLR Submission]

Linear combination of checkpoints.

15~23x training acceleration,

1.25~2x timestep compression

FlashEval
[CVPR’24]

OMS-DPM
[ICML’23]

USF
[ICLR’24]

Search for optimal 

diffusion schedulers.

1.5~2x speed-up

Algorithm-level
Time Step Compression

DD
[ICLR Submission]

generates image in 0.01s 

and can achieve >100x 

speedup for Image AR model 
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Achieving 2-5× speed-up on typical datasets and 2× speed-up 

on Text-to-Image generation

Mixing small and 

large models can 
possibly get better 

FID than only use 

large model

Methodology: Model Schedule

& Predictor-based Search

Motivation: Small models outperform 

large models at some timesteps

Model Schedule

Search 

Method

[1] Liu , Enshu, Ning, Xuefei, et al. “OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models.”  ICML 2023.

Optimizing the Model Schedule (OMS-DPM)
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Ours

Baseline

Optimizing the Model Schedule (OMS-DPM)

[1] Liu , Enshu, Ning, Xuefei, et al. “OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models.”  ICML 2023.
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Methodology: A framework that unifies all 

exiting solvers and search based on it. 

Motivation: Current solvers use sub-optimal 

strategies, cause poor quality with few NFE

The ranking of all strategies changes over timestep

Method 

framework

USF unifies all solversSearch method

Achieving 2× speed-up on Text-to-Image generation and 

enables sampling with very low NFE

Unified Sampling Framework (USF)

[1] Liu , Enshu, Ning, Xuefei, et al. “OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models.”  ICML 2023.



Unified Sampling Framework (USF)
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Ours Baseline

Results on T2I task

Results on typical datasets

[1] Liu , Enshu, Ning, Xuefei, e t al. “A Unified Sampling Framework for  Solver  Searching of Diffusion Probabilistic Models.”  ICLR 2024.



Linear Combination of Saved Checkpoints (LCSC)
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Achieving 15~23× training speed-up on Consistency Models 

and 1.25~1.7× inference speed-up on Diffusion Models

Methodology: Search the combination 

coefficients of saved checkpoints 

Motivation: Combination of checkpoints can 

improve the performance of CM/DM.

Use Case: accelerate training & 

enhancing converged models

[1] Liu , Enshu, …, , Ning, Xuefei, et al. “Linear Combination of Saved Checkpoints Makes Consistency and Diffusion Models Better.”  ICLR 2025 Submission.
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Baseline（FID=7.30） Ours（FID=5.54）

Linear Combination of Saved Checkpoints (LCSC)

[1] Liu , Enshu, …, , Ning, Xuefei, et al. “Linear Combination of Saved Checkpoints Makes Consistency and Diffusion Models Better.”  ICLR 2025 Submission.



Distilled Decoding of Image AR model (DD)
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[1] Liu, Enshu, Ning Xuefei, e t al. “Distilling Autoregressive Models Into Few Steps 1: Image Generation.”  ICLR 2025 Submission.

[2] Sun, Peize, e t al. “Autoregressive Model Beats Diffusion: L lama for Scalable Image Generation."  Arxiv 2024

[3] Tian, Keyu, e t al. “Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction."  NeurIPS 2024.

Motivation1: Auto-regressive (AR) image 

generation model takes too many steps to 

generate

LlamaGen[2] VAR[3]

… …

>200 steps

>5s/img
10 steps

~0.13s/img

Motivation2: Typical solution don’t work: 

modeling the distribution of multiple steps 

simultaneously 

Ignore the correlation and introduce the gap between

ςi=𝑘+1
𝑚 𝑝(𝑞𝑖|𝑞𝑘, … , 𝑞1) & 𝑝(𝑞𝑚, … , 𝑞𝑘+1|𝑞𝑘, … , 𝑞1) 

1step generation



Distilled Decoding of Image AR model (DD)

2024/10/18 Xuefei Ning @ NICS-efc Lab Page 64

[1] Liu, Enshu, Ning Xuefei, et al. “Distilling Autoregressive Models Into Few Steps 1: Image Generation.”  ICLR 2025 Submission.

Methodology:

• Introduce noise token and flow-matching to construct an auto-regressive trajectory

• Train the model to skip further along the trajectory

1. Construct the trajectory 2. Training & Sampling



Distilled Decoding of Image AR model (DD)
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[1] Liu, Enshu, Ning Xuefei, et al. “Distilling Autoregressive Models Into Few Steps 1: Image Generation.”  ICLR 2025 Submission.

Results: DD generates image in 0.01s and can achieve >100x speedup for Image AR model with 

acceptable performance loss. 

1step 2step 42step 256step



Motivation: Diffusion Quantization
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The text-to-image/video diffusion models are memory-intensive,

and cannot be deployed on Edge Devices (Even Desktop GPU)

FP16 SDXL 512x512
9.7GB Peak Memory

>

Desktop GPU: RTX4070
8GB GPU Memory

Mobile: IPhone 14
6GB Memory

Solution: Model Quantization, low-bit data storing and

computing, reduce the memory cost

Open-SORA 2s Video
~10 GB Peak Memory
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Motivation: Few-step text-to-image

diffusion models face additional

challenge for quantization

Solutions:

• BOS-aware Quantization Technique
“Address Outliers in Text Embeddings”

• Mixed-precision Bit-width Allocation
“Address over-sensitive layers”

[1] Zhao, Tianchen, Ning, Xuefei, et al. “MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization.”  ECCV 2024.

Mixed-precision Quantization (MixDQ)

(* Adopting Q-Diffusion for 1-step SDXL-turbo model)

"Two sheep are standing 

side by side behind a fence."

FP16 Q-Diff (W8A8)
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Motivation: Quantization affects both

the image quality & content
Solution:

• ”Metric-decoupled” analysis

and mixed precision

Mixed-precision Quantization (MixDQ)

[1] Zhao, Tianchen, Ning, Xuefei, et al. “MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization.”  ECCV 2024.
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Experimental Results: MixDQ improves both image quality & text alignment

Achieves W4A8 with negligible loss(+0.5 FID), while baseline methods fail at W8A8 (+50 FID)

Mixed-precision Quantization (MixDQ)

FP16
Baseline

(W8A8)

MixDQ
(W8A8)

MixDQ
(W4A8)

[1] Zhao, Tianchen, Ning, Xuefei, et al. “MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization.”  ECCV 2024.



Mixed-precision Quantization (MixDQ)
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Practical 1.45× speed-up and 2× memory saving on Nvidia GPU

Open-source tool that achieves speedup and support few-step models

[1] Zhao, Tianchen, Ning, Xuefei, et al. “MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization.”  ECCV 2024.



Video and Image DiT Quantization (ViDiT-Q)

2024/10/18 Xuefei Ning @ NICS-efc Lab Page 71

[1] Zhao, Tianchen, …, Ning, Xuefei, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation”  ICLR 2025 Submission

DiT Quantization for Image and Video Generation

FP16 ViDiT-Q W8A8 Baseline W8A8

Baseline W4A8Baseline W8A8FP16

Nearly Identical

Multiple Fins Blank Images

FP16 Baseline W8A8

Baseline W4A8 ViDiT-Q W4A8

ViDiT-Q W8A8

Blurred and Blank



Video and Image DiT Quantization (ViDiT-Q)
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Motivation: DiT (Diffusion Transformers) have unique properties for quantization

Unique challenges for quantizing DiT

• “highly variant activation along different levels”

• “Time-varying” Channel Imbalance

Solution: Quantization scheme tailored for DiTs
Static-Dynamic Channel Balance

• Combine the advantage of current scale-based (AWQ)

and rotation-based (Quarot) channel balancing methods

[1] Zhao, Tianchen, …, Ning, Xuefei, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation”  ICLR 2025 Submission



Video and Image DiT Quantization (ViDiT-Q)
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Motivation: Video generation task have unique properties for quantization

Solution: Quantization scheme tailored for visual generation task

Quantization has effects on multiple

aspects of visual generation

Decouple the quantization‘s effect on multiple aspects

To preserve performance for multiple aspects

[1] Zhao, Tianchen, …, Ning, Xuefei, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation”  ICLR 2025 Submission



Video and Image DiT Quantization (ViDiT-Q)
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Achieve superior performance for multiple aspects 

Comprehensive Benchmark Multiple Metrics

Similar performance with FP16 Outperform baseline quantization methods

Qualitative Examples

[1] Zhao, Tianchen, …, Ning, Xuefei, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation”  ICLR 2025 Submission



Video and Image DiT Quantization (ViDiT-Q)
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Achieve Efficiency Improvement with CUDA kernels

Practical Hardware Resource Savings:

• W8A8: 1.99x Memory, 1.71x Latency Speedup

• W4A8: 2.42x Memory, 1.38x Latency Speedup

ViDiT-Q improved quantization
technique introduces negligible
overhead while improving

performance, It achieves
similar speedup compared with

naïve quantization scheme

[1] Zhao, Tianchen, …, Ning, Xuefei, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation”  ICLR 2025 Submission



Attention Compression (DiTFastAttn)
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Reduces up to 76% of the attention FLOPs.

Achieve up to 1.8x speedup of DiT models on 2Kx2K generation.

Support both image generation and video generation.

[1] Yuan Zhihang, …, Ning Xuefei et al. “DiTFastAttn: Attention Compression for Diffusion Transformer Models”. NeurIPS 2024.

Motivation:

1. Attention can be computationally costly, especially 
when processing a large number of tokens, as is the 
case in high-resolution image generation and long-form 

video generation tasks.

2. Diffusion Transformer (DiT) are emerging as a 
popular model for image and video generation tasks. 
There are some redundant computations involved in the 

generation process when using DiT models.
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Method 1: Window attention with residual share
The changes in the attention output across different timesteps 

are primarily driven by a local attention window.

Attention Compression (DiTFastAttn)

Method 2 & Method 3:

Attention sharing across steps & CFG

Layer i

step = t
Attention
Sharing 
across 
Step

ATT

share

ATT

step = t+1

skip

Layer i

Layer i

Conditional
inference

Attention
Sharing
across 

CFG

ATT

share

ATT
skip

Layer i

Unconditional
  inference

In each timestep, 

we only compute the 

local attention and 

then add the residual 

of previous global 

attention, without the 

need to recompute 

the full global 

attention.

[1] Yuan Zhihang, …, Ning Xuefei et al. “DiTFastAttn: Attention Compression for Diffusion Transformer Models”. NeurIPS 2024.
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Apply to Video Generation

Experiments on OpenSORA

Attention Compression (DiTFastAttn)

R
a
w

D
iT

F
a

s
tA

tt
n

Apply to

2K Image 

Generation

Experiments on 

PixArt-Sigma

[1] Yuan Zhihang, …, Ning Xuefei et al. “DiTFastAttn: Attention Compression for Diffusion Transformer Models”. NeurIPS 2024.
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Motivation: Text-to-image Diffusion Evaluation is slow,

Many applications requires repeated evaluation

Prompt Set

(~40K)

Iterative 40K Times

Evaluating SD v1.5 50 steps on

complete COCO cost ~50 GPU hours

Many applications require

Repeated Evaluation

[1] Zhao, Lin, … Ning, Xuefei, et al. “FlashEval: Towards Fast and Accurate Evaluation of Text-to-image Diffusion Generative Models.”  CVPR 2024.
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Methodology: Find “Representative Subset”, by Evolutionary-inspired searching

[1] Zhao, Lin, … Ning, Xuefei, et al. “FlashEval: Towards Fast and Accurate Evaluation of Text-to-image Diffusion Generative Models.”  CVPR 2024.
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Diverse Evaluation Settings

Better Evaluation Eff-Perf Trade-off

12 Model Variants

(Dreamlike, SD v1.2/1.5/2.1 and
their 6/8 bit Quantized version)

8 Schedules

(DDIM, DPMSolver, PNDM

10/20/50 Steps)

4 Metrics

(FID, ImageReward

CLIPScore, HPS)

Our Searched 50-item Subset have comparable

evaluation quality with Random-sampled 500

[1] Zhao, Lin, … Ning, Xuefei, et al. “FlashEval: Towards Fast and Accurate Evaluation of Text-to-image Diffusion Generative Models.”  CVPR 2024.
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Overall Cost
(for each iter)

LCSC & OMS-DPM & USF & DD
(Schedule Optimization)

MixDQ & ViDiT-Q
(Mixed-precision quantization)

DiTFastAttn
(Attention Compression)

Total Latency: 𝒕𝒎𝒐𝒅𝒆𝒍 ∗ 𝑵𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏

Total Latency: 𝒕𝒎𝒐𝒅𝒆𝒍 ∗ 𝑵𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑 ↓

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏

Total Latency: 𝒕𝒎𝒐𝒅𝒆𝒍 ↓∗ 𝑵𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 ↓ +𝑴𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 ↓

Total Latency: 𝒕𝒎𝒐𝒅𝒆𝒍 ↓∗ 𝑵𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

Total Memory: 𝑴𝒘𝒆𝒊𝒈𝒉𝒕 + 𝑴𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 ↓
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Agent and Multi-model Framework Long Context LLMs

Edge Scenario Deployment Security-Efficiency Synergy

Language Generation Visual Generation

Spatial-Dimension:

High-resolution Generation

Temporal-Dimension:
Long Video Generation
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Goal: higher generation quality + better controllability and interactivity

Unified Model Architecture Unified Generation Approach

WQ WV

WO

Multi-head Self-Attention

WK

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Auto-regressive

Decoding

Diffusion

Efficiency Challenge:

Quadratic complexity in 
context length

Transformer

Efficiency Challenge:

Multiple generation steps
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LLaMA-2-7B 

on AMD MI210
2× throughput 
improvement

Efficient Large Language Models

SoT
[ICLR’24]

Parallel generation via prompting.

1.91~2.39x speed-up

Algorithm-level

MoA
[ICLR Submission]

Sparse Attention

LLM-MQ
[NeurIPS’23 Workshop]

Quantization

Decide the heterogeneous elastic rule 

of the attention span for each head.

5.5~6.7x throughput improvement

Mixed-precision quantization. 

2.8-bit quantization

Model-level 

QLLM-Eval
[ICML’24]

Evaluating the effect of quantization. 

Providing knowledge and practical 

suggestions

Survey
[CSUR Submission]

Survey on efficient LLM inference 

techniques

Overview

EEP
[ICLR Submission]

Search the pruning pattern for MoE 

and use expert merging for finetuning. 

48%~71% memory reduction, 

1.11~1.40x speed-up,

better performance

Pruning

Vicuna-7B on Nvidia-A100

batch size 20

end-to-end latency 2.3x
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Stable Diffusion on a single

NVIDIA A100 GPU, Achieving 6.9× speed-up and 

reducing 1.5× memory

Efficient Diffusion Models

Quantization

Fast 

Compression

FlashEval
[CVPR’24]

10x 

evaluation 

acceleration

MixDQ
[ECCV’24]

Mixed-precision quantization.  

3x memory decrease,

1.5x speed-up

Model-level

ViDiT-Q
[ICLR Submission]

DiTFastAttn
[NeurIPS’24]

Quantization for DiT.  

2.5x memory improvement,

1.5x speed-up

Window & reused attention for DiT.

1.6x speed-up

Pruning & Sparse Attention

LCSC
[ICLR Submission]

Linear combination of checkpoints.

15~23x training acceleration,

1.25~2x timestep compression

OMS-DPM
[ICML’23]

USF
[ICLR’24]

Search for optimal 

diffusion schedulers.

1.5~2x speed-up

Algorithm-level
Time Step Compression

DD
[ICLR Submission]

generates image in 0.01s 

and can achieve >100x 

speedup for Image AR model 

Pixart-Sigma, 2K generation

on NVIDIA A100 GPU

1.8x latency speedup

OpenSORA, 512x512x16 Frames,

on NVIDIA A100 GPU,

2x Memory Savings, 1.7x latency speedup
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