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> Trend of Generative Models

The model size & input/output length of generative models
have being rapidly increasing

2018 - 2023
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| | LLaMA-2-70B [2] (year 2023): 70B params, >120ms/token
inference speed on 6xRTX 3090Ti.

Stable Diffusion [3] (year 2022): 1.45B params, 6.2x10% GPU
1e2 days to train, 3.5s/img inference speed on NVIDIA A100.

103 L
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50 1960 1970 1980 1990 2000 2010 2020 .
Publication date Release Time
[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv 2022. [4] Yang et al., "Harnessing the Power of LLMs in Practice: A Survey
[2] Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv 2023. on ChatGPT and Beyond®, ACM Transactions on Knowledge
[3] Rombatch et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022. Discovery from Data 2023.
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Research Overview

Research Goal: Efficient model inference for AIGC application

Large Language Models
(e.g., LLaMA-2-7B)

Language Generation Application Visual Generation

Diffusion Models
(e.g., Stable Diffusion 3)

Methodology: System-aware algorithm-level and model-level optimization

. Technique
Algorithm-level 9 Model-level
Diffusion Timestep _ Tackling Many _
Compression Timesteps of Diffusion Structure Model
Design Compression
Non-Autoregressive Tackling Full Autoregressive
Generation Generation of LLMs
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Research Summary

Overview

Survey
[Under Review]

Survey on efficient LLM inference
techniques

Algorithm-level

SoT
[ICLR’24]

Parallel generation via prompting.
1.91~2.39x speed-up

Model-level

Sparse Attention

MoA

[Under Review]

Decide the heterogeneous elastic rule
of the attention span for each head.
5.5~6.7x throughput improvement

Pruning

EEP

[Under Review]

Search the pruning pattern for MoE
and use expert merging for finetuning.
48%~71% memory reduction,
1.11~1.40x speed-up,
better performance

Quantization

LLM-MQ

[NeurlPS’23 Workshop]

Mixed-precision quantization.
2.8-bit quantization

MBQ
[Under Review]

Modality-balanced quantization for VLM.
acc. improvement on MMMU: W3 up to
5.4%, W4A8 up to 3.8%

QLLM-Eval

[ICML’24]

Evaluating the effect of quantization.
Providing knowledge and suggestions

Efficient LLM/VLM

Algorithm-level
Time Step Compression

Linear combination of checkpoints.

LCS(_: 15~23x training acceleration,
[Under Review] 1.25~2x timestep compression Fast
USF OMS-DPM Compression

[ICLR’24]

DD
[ICML’23] [Under Review]
Distill AR into Flow Matching,
can achieve >100x speedup
for Image AR model

Search for optimal
diffusion schedulers.
1.5~2x speed-up

Model-level
Quantization

[ [:{a]e]
[ECCV’24]

Mixed-precision quantization.
3x memory decrease,
1.5x speed-up

ViDiT-Q

[Under Review]

Quantization for DiT.
2.5x memory improvement,
1.5x speed-up

Local Attn. & Act. Sharing

DiTFastAttn Window & reused attention for DiT.
[NeurlPS'24] 1.6x speed-up

Efficient Vision Generation

FlashEval
[CVPR24]

10x
evaluation
acceleration
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> Efficient Techniques for LLMs

Directions to improve Large Language Models’ efficiency

Prefill Stage Decode Stage
Reduce tyrerin, Reduce tiecode
Mweightr Mother_act Mweightr Mkv cache

Overall Cost
(for each request)

Total Latency: tprefill + tdecode * Ntoken

\ T R XA .
) J\HW Total Memow- Mweight + Mkv cache T Mother_act
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> Overview of Efficient Techniques

&3 Lower Latenc @ Lower Storage Higher Throughput Lower Power
y g i ™9 gnp m Consumption
What algorithm Cause what? Solutions
2 T T T T ——————— .
property | Data-level Optimization Input :
« Large computation |+ Prompt pruning Compression | |
Model Scale +  Large memory access : *  Soft prompt tuning E— |
*  Large memory footprint S L put |
| * Output Organization Organization | |
_________________________ |
I Model-level Optimization _i
_ _ - Dynamic MoE Structure |
) * Input-quadratic computation - lexity attenti Design |
Attentlpn +  Input-quadratic memory access | QOL:’;'r‘:fi;naF:ii’:l' y attention |
Operation »  Input-quadratic memory footprint : . Sparse Attention Model :
: «  Weight Pruning Compression | |
. |
r—:::—j————rT—r —————————— -
* Low arithmetic intensity (i.e., computation /| | System-level Optimization Inference :
Decoding memory access) cause under-utilization I gra_ph. and Operator Engine |
Approach «  Varying length -> Dynamically increasing : ) Spélgl].:é?it\l/%ndecodin : I
KV cache cause fragmented memory, | MF()amor Mana emer?t Serving :
increasing both footprint and access : Batchinyg 9 Framework | |
[1] Zhou, Zixuan*, Ning, Xuefei*, et al. "A Survey on Efficient Inference for Large Language Models.” arXiv 2024. |_ _' - JI
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> Skeleton-of-Thought (SoT)

To accelerate the sequential generation of LLM inference, SoT relies on the LLMs’
planning ability and proposes a two-stage parallel generation scheme to achieve up
to 2.39x end-to-end speed-up.

Challenge: Existing LLMs use the sequential
generation that generates tokens one by one,
resulting in a significant end-to-end latency and a

Methodology: We propose SoT with two stages:

+ Skeleton Stage: Guide the Jema. Question _ Skeleton-oftthought

LLM to output a concise

low hardware utilizati

Motivation: Can we r

cannot be paralielized| 1he 15t agentic generation method for efficiency
(relying on the LLM’s emerging ability to organize
the output, so as to introduce parallelizability)

(1) Skeleton
stage

Answer

J

LLMs themselves to in —
generation process, and thus do parallel generation

to improve the hardware utilization and latency.
* Humans do not always think about questions in a
sequential fashion. For many question types,
+  We first derive the skeleton according to some
protocols and strategies
+ Then add details to explain each point.

YT

We further extend SoT with router (SoT-R) to make the overall
solution more practical. The router first decides whether to apply
the SoT decoding mode based on the user’s prompt.

positive
Skeleton

—> Answer

—> Answer

Question—>|

negative

[1] Ning, Xuefei*, Zinan Lin*, et. al., "Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation." ICLR 2024.
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Mixed-precision Quantization (LLM-MQ)

To explore ultra-low bit-width weight quantization for accelerating LLM decoding, LLM-MQ
proposes a mixed-precision quantization method and achieve 1.2~1.4X e2e speed-up

Challenge: Using a consistent low bit-width
format across all layers is hard to push the bit-
width to 3-bit without significant accuracy loss.

Motivation: Different layers have significant

Methodology:

» Keep the outliers with FP16 format.

» Assign high bit-width to sensitive layers in order
to minimize the change in model output.

sensitivities, requirif” N;“ Ps

we tar:mdt? ‘3"3‘|’te'°||f’E Does the accuracy on specific tasks sufficiently = —=t=p

m e o o r ra o - - 3bit 3bit 2bit 2bit. 4bit
Hra oy reflect the effect of quantization on LLMs? = =

sensitivities

""‘"l||“"“"“"“'“'“" e
 EE Attention
Sensitivity Analysis of LLaMA2-13B

ey g

Yo7 Sensitivity-based Precision Allocation

Xa) SParse CULICT T TUCCToN

» For zero-shot understanding tasks:
* When the average accuracy loss is around 0.1%, the
model can be quantized to an average of 3.6 bits.
* When the average accuracy loss is around 1%, the
model can be quantized to an average of 2.8 bits.

[1] Li, Shiyao, Ning, Xuefei et. al., "LLM-MQ: Mixed-precision Quantization for Efficient LLM Deployment." NeurlPS Workshop 2023

2024/12/27

Xuefei Ning @ NICS-efc Lab

Page 12



> Evaluating Quantized LLMs (QLLM Eval)

To optimize LLMs for efficiency across diverse scenarios, we propose a comprehensive
evaluation for 11 LLM families under W, WA, KV quant on various tasks

Knowledge Level Key Knowledge

1. Tensor type (Sec. 3.2): The larger the model, the higher the tolerance for Weight-only and KV
Cache Quantization, while the tolerance for Activation Quantization is lower.

2. Tensor position (Sec. 3.2): The sensitivity to quantization varies significantly across different
tensor positions due to their distinct data distributions.

Tensor-level

1. (Sec. 3.3) The relative rankings of quantized LLMs are generally consistent with those of the
FP16 LLMs when the bit-width is higher than W4, W4AS8, and KV4.

2. (Sec. 3.3) Leveraging MoE to increase the model size can improve the model’s performance
but may not improve the tolerance to quantization.

Model-level

1. Emergent abilities (Sec. 4): The tolerance of Multi-Step Reasoning and Self-Calibration to

quantization is lower than that of Instruction-Following and In-Context Learning abilities.

2. Dialogue tasks (Sec. 6): As the bit-width decreases, sentence-level repetition occurs first,
Task-level followed by token-level repetition, and token-level randomness.

3. Long-Context tasks (Sec. 7): The longer the text, the larger the performance loss caused by

Weight and KV Cache quantization. Most LLMs are more sensitive to KV Cache Quantization

than Weight-only and Weight-Activation Quantization.

1. Basic NLP tasks (Sec. 3): W4, W4A8, KV4, W8KV4.
2. Emergent (Sec. 4): W8, W8AS8, KV8 (< 13B); W4, W4A8, KV4 (> 13B).
Bit-width 3. Trustworthiness (Sec. 5): W8, W8AS8, KV8 (< 7B); W4, W4AS8, KV4 (> 7B).
Recommendation 4. Dialogue (Sec. 6): W8, W8AS8, KV4.
5. Long-Context (Sec. 7): W4, W4A8, KV4 (token < 4K); W4, W4AS8, KV8 (token > 4K).
(Note: Within 2% accuracy loss on the evaluated tasks. The recommended quantization bit-width
may not generalize to other LLMs or tasks)

[1] Li, Shiyao, Ning, Xuefei, et al. “Evaluating Quantized Large Language Models.” ICML 2024.
2024/12/27 Xuefei Ning @ NICS-efc Lab Page 13



> Mixture of Attention (MoA)

For long-context LLM decoding, MoA assigns the heterogeneous elastic sparse pattern for each
attention head and improves the inference throughput by 1.7-1.9x compared to vLLM.

Challenge & Motivation: Existing | 1500 m FlashAttention2 _
methods employ a uniform sparse 5 1099 ';\’ALOLA[‘\" On the Vicuna-7B, MoA
attention mask across each head | | £ 2 1000 629 achieves a 6.6-8.2x
and fail to capture the diverse || B 3 < 500 323536 5 throughput improvement
attention patterns in LLMs. Unified Mask| | £ = 135 67 331462 compared to FlashAttn2
o mm | — . and a 1.7-1.9x compared
4K 8K 16K to VLLM.
) ) Token length
Methodology: MoA automatically tailors 9
distinct sparse attention configurations
to different heads and layers. A 50% density mask is
* MoA constructs and navigates a search space _ Token length used to search for a
oflvarlotjst_att(intllon p;atterns andI theltrhscallng Methodology mmmm scheme within a 12k
ruies refative 1o Input sequence fengins Dense Model  0.98 093 0.76 0.37 sequence length. The
A E = Sin & InfLLM 043 032 025 Out-OfTime Pattern Clan be directly
— 10 i
0 [ T Joptmizeyf [ 17012 StreamingLLM 052 048  0.41 0.25 used on longer input up
R EEEN 1 o, MoA PN B 0.46 to 256k and achieves
(0) . . . g H
MoA: Heterogeneous Mask Improvements.

[1] Fu, Tianyu*, Huang, Haofeng*, Ning, Xuefei*, et al. “MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression.” arXiv 2024.
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> Efficient Expert Pruning (EEP)

For MoE LLM inference, we propose to merge expert to inherit knowledge, achieving
75%I/50% total/active expert sparsity. EEP can generalize on OOD data.

Challenge & Motivation:

» The mixture-of-expert (MoE) architecture
has a large parameter size when there are
many experts.

« We aim to reduce the latency & peak
memory through expert pruning and
recover the accuracy through expert
merging.

» How to efficiently and best inherit the
knowledge from original model when
pruning experts?

Methodology

1. Use weight merging to preserve the “knowledge”
of pruned experts

2. Use evolutionary search to optimize merging
matrix

3. Use absolute performance as the objective.

i
R bt M % Expert Merging
Router Mapping X H Y
2 H X

Use Cases M = Xyeighe! + Mother

1. Reduce total expert t _ #Mem Access

2. Reduce active expert decode = BW x BW_Util
#0P

t m o~
prefill ™ poak_perf x Comp_Util

[1] Liu, Enshu*, Zhu, Junyi*, Lin, Zinan+, Xuefei Ning+, et al. “Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs ” arXiv 2024.

2024/12/27
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>

Efficient Techniques for LLMs

4 )
Overall Cost Total Latency: tp,cfini + taecode * Ntoken
L (for each requeSt) TOtaI Memory: Mweight + Mkv cache + Mother_act )
4 )
SOT Total Latency: tprefill + tagecode * Ntoken /B
(Skeleton-of-Thought) Total Memory: Mweight + Mkv cache + Mother_act
N\ J
4 )
LLM-MQ, QLLM-EvaI Total Latency: tprefill + tdecodel * Ntoken
(Quantization) TOtaI Memory: Mweightl + Mkv cache + Mother_act
MOA Total Latency: tprefill + tdecodel * Ntoken
L (Mixture of Attention) Total Memory: M, ign: + My cachel + Mother act )
f )
EEP Total Latency: tprefill + tdecode | * Nioken
L (Efficient Expert Pruning) Total Memory: M, n:| + Myy cache + Mother act )
2024/12/27 Xuefei Ning @ NICS-efc Lab Page 16
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> How DMs do inference

« Forward Process: Gradually add gaussian noise of different levels
« Backward Process: Gradually denoise the gaussian noise
* Intuition: the NN learns to predict the “noise” at each timestep.

O Sample data p(X,) = turn to noise

pr(xr)~N(0,1

Pure

Po(Xo)

Clean X X
! g | T .
sample noise

® Reverse [denoising process

[1] Ho, Jonathan et al. “Denoising Diffusion Probabilistic Models.” ArXiv 2020.

2024/12/27 Xuefei Ning @ NICS-efc Lab Page 18



> Efficient Techniques for DMs

Directions to improve Diffusion Models’ efficiency

Algorithm-level Model-level
Reduce toder

Reduce N;;
timestep M weight, Mact

Overall Cost

e (for each iter)

lterate T times

— Tlotal Latency: t,,,4e1 * Ntimestep

II —>[ Diffusion U-Net ]—> /

Random Noise Large Scale Model

Total Memory: Mweight + M yctivation

Generated Image

2024/12/27 Xuefei Ning @ NICS-efc Lab Page 19



>

Optimizing the Model Schedule (OMS-DPM)

For Text-to-Image generation tasks, we propose a predictor-based search algorithm to
optimize the model schedule, achieve 2x speed-up.

Challenge: Diffusion models require multiple
forward passes of large models to generate images,
leading to high latency.

—— Best single model FID

Motivation: We find that »
smaller models outperform |,
large models at some
timesteps, suggesting that
mixing small and large
models can not only
reduce latency but also
potentially improve
performance..

Number

Methodology:

Design a model schedule to mix small and
large diffusion models during generation.
Train a predictor to search better model
schedule.

Model

i i-1
W a; ag

ay a, az
4 az 2-nd Solver 3-rd Solver

—— Schedule 1
— Schedule 2

— Model Schedule

Schedule

Predictor-based
Search Method

[1] Liu, Enshu*, Ning, Xuefei*, et al. “OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models.” ICML 2023.

2024/12/27
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> Unified Sampling Framework (USF)

For text-to-image generation, we propose to optimize solver schedule,
achieving 2x speed-up and enables sampling with very low NFE.

Challenge: Most of the current solvers use sub- Methodology: Design a unified sampling
optimal empirical strategies, cause poor quality framework with 6 different components.
with few number of function evaluations (<10).

Orders and Prediction Types Low Order Derivative Estimation S Derivative Scale Methodsmemm" ! °

= . Corrector Fa(_l.,:)]l €o(xe,_, ti-1) €alxe,_p ti-2) €6ty tiza)

3 é > NV 2 ;\‘ ‘ __:\\ T~—— [ Derivative Estimation
i R A i 1.1< A ] \ZJ_E____)_%;(_B_”‘ ‘
g ol s d i AN\ R / \r| 2o " X 7‘7‘\‘(" T T = A 4 Bl te) + T (eutin) D% (et ;,‘\
O L, Ve [} ,,S o F:A/ (M \' :/\/\\ /‘ . ,_.,1_4;;7/\ ?\l |Eo: Prediction Type Ppasion order
- o - B . v e "’\’:" S‘ o. 2w :7’1 0. \Lg‘l\,l = Ax, + Bp(x tiy) + Cx(x ) + DD(x tiey) )/@

50 200 300 400 500 630 700 800 T 100 200 300 400 500 60 700 800 T 100 200 300 400 500 200 %0 40 50 &
Timesteps Timesteps Timesteps Timesteps

The ranking of all strategies changes over timestep

Motivation: Instead of using the empirical solver Construct a performance

strategies, we aim to propose a unified sampling predictor to enable the fast . Jo

framework to automatically search for better evaluation of different solver ' ¢.9¢ el
solver strategies. schedules. . RS

[1] Liu, Enshu, Ning, Xuefei+, et al. “A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models”. ICLR 2024.
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>

Linear Combination of Saved Checkpoints (LCSC)

For the training of Consistency and Diffusion Models, we propose to combine
checkpoints and optimize the coefficients, achieving 15~23x training speed-up on CM
and 1.25~1.7x inference speed-up on DM.

Challenge: The training variance
of DMs and CMs is relatively high, _
leading to suboptimal performance T’
and large time cost (e.g., >600
GPU hours on CIFAR-10)

oooooooooooooooooooooooooooooooooo

Perf. fluctuates greatly

Motivation: Combining checkpoints during the
training process instead of relying solely on
gradient-based training might help.

Model Near 200K Training lter Model Near 800K Training Iter
0.0

1.0 o, 1.0 0®
g 50
0.5 3 0.5 ‘
< 54 @
00 65, Ony we L 00 9,-,.,- 9::;*

S <
-0.5 15 -0.5

-1.0 i -1.0

Methodology: Search the combination coefficients
of saved checkpoints with evolutionary search.

Training Process:

EGradlenl

Evolutionary Search: Faster Training

> Weight linear combination: [ay, ar, ..., ak N fpe”'
0, 116, + @20, + - +ax6,, (j:: =,

ne [0 N]
6!
=> Loss —
Crossover ng <N
8@ 6, g [ £ =
Better Perf.
: Selecnon =N

Save weights every
multiple iterations.
0,

6N
g 9,“@ ﬂ {la1, a2, ..., ax], FiD} > g |3\

[6,,,6,., ...,

Use Case: LCSC can (1) accelerate training
process and (2) enhancing the performance of
converged DMs and CMs.

[1] Liu, Enshu*, Zhu, Junyi*, Lin, Zinan+, Ning, Xuefei+, et al. “Linear Combination of Saved Checkpoints Makes Consistency and Diffusion Models Better.” arXiv 2024.
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> Distilled Decoding of Image AR model (DD)

For AR image generation, we introduce noise token and propose distilled decoding,
which generates image in 0.02s and can achieve >100x speedup with acceptable
performance loss.

Challenge & Motivation: Auto-regressive (AR) image generation model often takes a significant inference
latency since the token generation cannot be parallelized. The typical solutions try to model the
distribution of multiple steps simultaneously, and don’t work for very few steps generation.

Methodology:
* Introduce noise token and flow-matching to construct an auto-regressive trajectory
« Train the model to skip further along the trajectory

1. Construct the trajectory 2. Training & Sampling
Gaussian Training Generation
Prggdgggroihe distribution Xs 3-ste§)_step
Al A i @@@e
Autoregressive _ '. _
Decoding 0a ° % @ @ @ @ \)ZSteP
e
@ \4 \ 1 C C3_ > Legend: - ‘
Mixture of Dirac delta X, @ @ @ -+ Teacher AR mode

distributions

[1] Liu, Enshu, Ning Xuefei, Yu Wang, Zinan Lin. “Distilling Autoregressive Models Into Few Steps 1: Image Generation.” arXiv 2024.

2024/12/27 Xuefei Ning @ NICS-efc Lab Page 23



> Mixed-precision Quantization (MixDQ)

For few-step DMs, MixDQ adopts a metric-decoupled sensitivity analysis method for mixed
precision bitwidth allocation to achieve W4A8 quantization of 1-step DMs, achieving 2-3x peak
memory reduction and 1.4x speed-up on RTX3090 (SDXL-Turbo, 1024x1024).

Challenge & Motivation: Few-step text-to-image DMs is Challenge & Motivation: Quantization affects both the
hard to be quantized because of the large outliers in text image quality and content, so we need to consider both
embeddings and the existence of highly sensitive layers. effects when assessing the sensitivity of each layer.

Methodology: Methodology:
+ Design BOS-aware quantization technique to protect the large . Design “Metric-decoupled” sensitivity analysis to

outliers in text embeddings without quantization. guide the bit-width allocation process.
*  Design mixed-precision bit-width allocation to assign high-

precision for sensitive layers

BOS-aware Text Metric-Decoupled Sensitivity Analysis Mixed Precision Search BOS-aware Text Metric-D led itivity Analysi Mixed Precision Search
Embedding Quantization (Sec. 3.2 (Sec. 3.3 Embedding Quantization (Sec. 3.2 (Sec. 3.3)
(Sec. 3.1) N (Sec. 3.1) N
Diffusion U-Net Integer Planning Diffusion U-Net Integer Planning
BOS features are Outliers e BOS features are Outliers G EEGTET
m m Candidate: W[2/4/8] A[4/8] m Candidate: W[2/4/8] A[4/8]
m ‘ (Each Layer) w | (Each Layer)
. Objective: Minimize Sensitivity " Objective: Minimize Sensitivity
B Quality-related Layers . B Quality-related Layers "
Text Emb. | Content-related Layers Constraint: Memory Budget Text Emb. | | Content-related Layers Constraint: Memory Budget
: Metric: SSIM Metric: SQNR : Metric: SSIM Metric: SQNR
HH : (Preserve Content) (Preserve Quality) HH : (Preserve Content) (Preserve Quality)
o — HE —
=08 =] B=a3 [=I
BOS features remain the same - BOS features remain the same -
" Output Logits — - N Output Logits — -
for different prompts Getl L ! Get the optimal mixed for different prompts Getl e " Get the optimal mixed
(Skip Quantization & Pre-Computed Offline et layer sensitivity separately precision configuration (Skip Quantization & Pre-Computed Offline] et layer sensitivity separately precision configuration

[1] Zhao, Tianchen*, Ning, Xuefei*+, et al. “MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization.” ECCV 2024.
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> Video and Image DiT Quantization (ViDiT-Q)

For DiT models and video generation, ViDiT-Q uses a static-dynamic channel balancing
technique and metric-decoupled mixed-precision quantization to achieve lossless W8AS8
with a 1.4-1.7x E2E speed-up on A100 (OpenSoRA and Pixart-a/o).

Challenge & Motivation: DiT (Diffusion Transformers) have

unique properties for quantization:

+ Highly variant activation distribution along token, CFG and
timestep levels.

» Time-varying Channel-wise Imbalance.

Methodology:

* Fine-grained group-wise dynamic quantization for activations.

« Static-Dynamic Channel Balance: Combine the advantage of
current scale-based and rotation-based balancing methods.

UnCond Cond
A

s i o 099 |
sl Y . H -
‘\ Tokep-\fvise CFG-wise @T' p-wi 1ol Ti ying Ch: -wi
Variation Variation Variation Tt Variation
\ Resolve / T
Fine-grained grouping and Static-Dynamic Channel
Dynamic Quantization (Sec 4.1) Balance (Sec 4.2)

Challenge & Motivation: Quantization affects multiple
evaluation aspects on video generation task.

Methodology: Quantization scheme tailored for visual

generation task

* Decouple the quantization‘s effect on multiple aspects to
preserve performance for each aspect.

Metric-Decoupled Mixed Precision (Sec. 4.3)

20 steps denoising —
£ 1 1 1 1} “,
0-5 6-10 11-15 16 - 20

CD Iterate for each time range

Step1: Assign Budget m TempAttn € rr— Overall

for each Group 5.54 4.05 434 Avg. Bitwidth:
(Based on MSE error wit ith FP16 with each group quantized) 5.00

Step2: Metric- ok

Decoupled Inter-Block |X| Intra-Blocl Iterate for

Sensitivity Analysis  (Measure corresponding metric error —* each group
with FP16 with each layer/block quantized)

. Bit-Wi -
Step3: Bit-Width 4=+8 Iteratively set the most sensitive layer as higher
Allocation D bit-width until satisfies parameter budget Parameter Budget

[1] Zhao, Tianchen, ...,Ning, Xuefei+, et al. “ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation.” arXiv 2024.
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Attention Compression (DiTFastAttn)

To reduce the attention overhead in DiTs, we leverage local attention and activation
sharing, achieving 76% FLOPs and 1.8x speed-up on A100 (Pixart-o, 2048x2048).

Challenge: DiTs excel at image & video generation but face computational challenges due to the O(N?) complexity of self-attn.

Motivation: The changes in the attention output across
different timesteps are primarily driven by a local attention
window.

Methodology: Design window attention with residual

* In each timestep, we only compute the local attention and then

add the residual of previous global attention, without the
need to recompute the full global attention.

Window attention

step t+1 Soﬂmax(%)x Ves1=Wdy 08, = W&, + Rt

Full attention Residual calculation

Soﬁmax(ﬁ)x v, =0¢ R*=0f — W

step t
Window attention

Softmax( %) XV, = W2 og

Final attention output

Final attention output

Window attention

step t+2 Softmax(%)x Vesz= W&, 0%, = W&, + Rt

Final attention output

Motivation: We observe that in different timesteps and
CFG, the attention outputs of a certain attention head
exhibit significant similarity.

Methodology: Design to share the attention results across
timesteps and CFG

step=t step = t+1
Attention Sharing Az v
across Step 5 - ! skip
v 77 4 v
[T share T
Conditional Unconditional
inference inference
Attention Sharing '“ v
across CFG 1 o skip
v — ‘*‘ \4

[T 2 [T
share

2024/12/27
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[1] Yuan, Zhihang*, Lu, Pu*, Zhang, Hanling*, Ning, Xuefei+, et al. “DiTFastAttn: Attention Compression for Diffusion Transformer Models”. NeurlPS 2024.
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> Efficient Techniques for DMs

- )
Overall Cost Total Latency: t;,54¢1 * Ntimestep
(for each ter) Total Memory: Mweight + Mactivation
- J
4 )
LCSC & OMS-DPM & USF & DD Total Latency: t,,,4e1 * Niimestep 1
Schedule Optimization .
L ( - plimization) Total Memory. Mweight + Mactivation y
4 )
MixDQ & ViDiT-Q Total Latency: tinodel x Ntimestep
(Mixed-precision quantization) Total Memory: Mweight LM g ctivation 4
- J
N
DiTFastAttn Total Latency: Linodel x Ntimestep
(Attention Compression) Total Memory: Mweight + M yctivation ¥
J
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Research Summary

Overview

Survey
[Under Review]

Survey on efficient LLM inference
techniques

Model-level

Sparse Attention

MoA

[Under Review]

Decide the heterogeneous elastic rule
of the attention span for each head.
5.5~6.7x throughput improvement

Pruning

EEP

[Under Review]

Search the pruning pattern for MoE
and use expert merging for finetuning.
48%~71% memory reduction,
1.11~1.40x speed-up,
better performance

Efficient LLM/VLM

Algorithm-level

SoT
[ICLR’24]

Parallel generation via prompting.
1.91~2.39x speed-up

INFINIGENCE
X i3 i =

Llama-2-78

Quantization

LLM-MQ

[NeurlPS’23 Workshop]

Mixed-precision quantization.
2.8-bit quantization

Lama-2-78

MBQ
[Under Review]

Modality-balanced quantization for VLM.
acc. improvement on MMMU: W3 up to
5.4%, W4A8 up to 3.8%

w/o MoA

QLLM-Eval

loading model

[ICML’24]

Evaluating the effect of quantization.

Providing knowledge and suggestions

nvidia-smi
w/o MoA
w MoA

LLaMA-2-7B
on AMD MI210
2x throughput

improvement

Vicuna-7B on Nvidia-A100
batch size 20
end-to-end latency 2.3x

Xuefei Ning @ NICS-EFC EffAlg Team
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Research Summary

Algorithm-level
Time Step Compression
Linear combination of checkpoints.
Lcsc_ 15~23x training acceleration,
[Under Review] 1.25~2x timestep compression Fast
USF OMS-DPM DD Compression
[ICLR24] [icmML’23] [Under Review]
FlashEval
Search for optimal Distill AR into Flow Matching, [CVPR’24]
diffusion schedulers. can achieve >100x speedup
1.5~2x speed-up for Image AR model 10x
evaluation Stable Diffusion on a single
Model-| | acceleration NVIDIA A100 GPU, Achieving 6.9x speed-up and
Sl AR reducing 1.5x memory
Quantization
[ECCV’24] [Under Review] w/o DiTFastAttn with-DiTFastAttn
-
Mixed-precision quantization. Quantization for DiT. S ;
3x memory decrease, 2.5x memory improvement,
1.5x speed-up 1.5x speed-up

Local Attn. & Act. Sharing

DiTFastAttn Window & reused attention for DiT. ) L o
[NeurlPS'24] 1.6x speed-up Pixart-Sigma, 2K generation OpenSORA, 512x512x16 Frames
on NVIDIA A100 GPU on NVIDIA A100 GPU
Efficient Vision Generation 1.8x latency speedup 2y Memory Savings, 1.7x latency speedup
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We’'re Now Working On ...

» [Application-driven] Applying and analyzing efficiency techniques on multi-modality
understanding models & video generative models, to use them well

» [Application-driven] Developing methods for efficient long-context inference

« [Application-driven] Pushing to the edge: We want high compression ratio or a small
model from scratch

» Training-free techniques -> Training-based techniques
» Integrating efficiency techniques together, to understand their interplay and use them well
« How can we still inherit the knowledge well, or there is not difference from training from scratch?

» [Algorithm-driven] Developing efficient generative algorithm: Combining the benefits of
data-space autoregressive models and flow matching
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